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Abstract
A recent experiment by Takemura et al (2005 Proc. Joint 20th AIRAPT—
43rd EHPRG (Karlsruhe, June–July)) on the pressure-induced hexagonal-close-
packed phase of mercury, at pressures between 0.5 and 2 Mbar, has produced
reliable data on lattice parameters, axial ratio and the equation of state. We
have carried out first-principles calculations at 0 K of the structure parameters
as functions of pressure by minimization of the Gibbs free energy. The
agreement of the calculated lattice parameters and axial ratio with experiment
is in the range of 1% for the lattice parameters and 2% for the axial ratio; the
corresponding agreement for the equation of state is between 2 and 3%.

1. Introduction

The diamond anvil cell with x-ray diffraction has made possible reliable measurements on the
pressure dependence of structures to high pressures. A few sets of data on lattice parameter
values as functions of pressure are now available, including hexagonal-close-packed (hcp) Hg
by Takemura [1], face-centred cubic (fcc) and hcp Al by Akahama et al [2] and body-centred
cubic (bcc) and hcp Ba by Takemura [3]. Such data provide valuable tests of modern first-
principles total-energy band-structure theory, since the physical properties of a system may
change greatly but the same Hamiltonian free of adjustable parameters is applied over the
entire pressure range. Also the fit of calculated to experimental data is a quantitative test of
the procedure used to calculate equilibrium structure at each pressure, as well as a test of the
energy-band calculation and of the data.

In this study of hcp Hg under pressure we have used a procedure to find equilibrium which
minimizes the Gibbs free energy G = E + pV (E = energy per atom, p = pressure,
V = volume per atom) at T = 0 K at constant pressure. This procedure has been called
thermodynamically incorrect in two recent papers by Steinle-Neumann and Cohen [4] and by
Sin’ko and Smirnov [5]. These authors mistakenly believe that it is not possible to define a
Gibbs free energy for a system not in equilibrium. Our reply is that G for a crystal at T = 0 K
and finite p provided by outside sources is well-defined, even for non-equilibrium states, and
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moreover is minimized by the equilibrium structure at p. The fit at the 1% level of calculated
lattice parameters a(p) and c(p) to measured values for hcp Hg, shown here, and for hcp Ba
in [6], provide good support for the correctness of our procedure. In fact, a better fit than the
1% level found here should not be expected for rigid-lattice calculations like these, because
even at low temperatures zero-point lattice vibrations produce lattice changes at the 1% level.

At ambient pressure mercury is liquid at room temperature; at −38.9 ◦C it solidifies into a
rhombohedral structure (a = 3.005 Å at 227 K), and may exhibit a tetragonal phase at lower
temperatures (a = 3.995 Å, c = 2.825 Å at 77 K), if this phase is ‘formed at high pressure
and retained when the pressure is removed’ [7]. At room temperature, mercury solidifies if
subjected to hydrostatic pressure, and exhibits a series of crystalline phases when the pressure
is increased. At about 12 kbar the liquid solidifies into a rhombohedral structure (α-Hg); at
37 kbar it transforms into body-centred tetragonal (bct; β-Hg); at 120 kbar into orthorhombic
(γ -Hg); and finally at 370 kbar into hcp (δ-Hg, lattice parameters a and c) [8]. This sequence
is described concisely as follows (numbers are pressure values in kbar):

liquid
12−→ α-Hg (rhomb.)

37−→ β-Hg (bct)
120−→ γ -Hg (orthorh.)

370−→ δ-Hg (hcp).

The existence of a high-pressure phase of mercury in the hcp structure had been suspected
in the 1986 study of a pressure-induced transition in CdHg alloys [9], and was confirmed
theoretically by Moriarty in 1988 [10]. The first-principles generalized-pseudopotential
calculations of Moriarty predicted a wide stability range for the δ phase up to at least
10 Mbar with a high but decreasing axial ratio c/a. This prediction was tested and confirmed
experimentally up to at least 670 kbar by Schulte and Holzapfel [8].

Takemura et al [1] reported recently on a powder x-ray diffraction experiment on mercury
from 0.5 to 2 Mbar in a diamond anvil cell. This experiment produced data on the pressure
dependence of the lattice parameters a and c, their ratio c/a, the bulk modulus and its pressure
derivative, and the equation of state.

2. Procedure and results on hcp mercury

Here we compare our first-principles total-energy calculations on δ-Hg with the experimental
data of Takemura et al. We have used the WIEN2k computer program developed by Blaha
and co-workers [11], based on the full-potential linearized augmented plane-wave (FPLAPW)
method for computation of the electronic structure of solids from the Kohn–Sham equations of
density functional theory [12, 13] in the generalized gradient approximation (GGA).

The parameters used in the WIEN program were: muffin-tin radius RMT = 2.3 bohr;
plane-wave cut-off RKmax = 8.0; largest vector in the charge-density Fourier expansion
GMAX = 16 bohr−1; k-point sampling in the Brillouin zone of 28 000 points (about 1500 in
the irreducible wedge IBZ); criterion for energy convergence 1 × 10−6 Ryd.

The calculations used our well-tested procedure [14] of minimizing the Gibbs free energy
G at zero temperature for a number of pressures in the range from 0.4 to 2 Mbar. We calculate
G at a given p along the epitaxial Bain path (EBP), which is defined so that (∂G/∂c)a = 0 at
any given a [14]. Then at a minimum of G along the EBP, G has a minimum for two variations
of a and c, and hence must be a minimum for all variations of a and c around equilibrium. In
figure 1 we show this detail of the electronic calculation by plotting G(c/a) along the EBP for
three values of p. The shift of equilibrium to smaller c/a as p increases is shown. The values
of a and c separately are known at each point of the EBP. More details about the procedure are
given in [15].

The calculated values of a(p) and c(p) are presented in graphic form in figure 2 together
with the measured values. Figure 3 depicts the calculated axial ratio c/a versus p and
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Figure 1. Epitaxial Bain paths for Hg. Gibbs free energy G at 0 K as a function of axial ratio
c/a at three different pressures: 0.4, 1.1 and 1.8 Mbar, as marked. The ordinate axis, in units of
G + 39322 Ryd, ranges for 0.4 Mbar from −1.2853 to −1.2848), for 1.1 Mbar from −0.782 to
−0.780 and for 1.8 Mbar from −0.342 to −0.339.

pressure (Mbar)

La
tti

ce
 c

on
st

an
ts

 (
bo

hr
)

hcp  Hg

a

c

4

5

6

7

8

9

10

0 0.5 1 1.5 2

Figure 2. Lattice parameters a and c of hcp Hg as functions of pressure: crosses and plusses,
Takemura et al experiments [1]; open triangles, Schulte and Holzapfel experiment [8]; open circles,
this work.

figure 4 shows the calculated equation of state V (p). In each figure the experimental results of
Takemura et al [1] and of Schulte and Holzapfel [8] are shown. The agreement with experiment
varies for a from 1.5 to 0.6% at low and high pressures, respectively: for c from 0.4 to 0.8%,
for c/a from 2.4 to 0.5% and for the volume/atom from 2 to 3%.

3. Discussion

Rigid-lattice first-principles calculations of structural parameters as functions of pressure based
on density functional theory with the GGA should not be expected to agree with experiment
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Figure 3. Axial ratio c/a of hcp Hg as a function of pressure: crosses and plusses, Takemura et al
experiments [1]; open triangles, Schulte and Holzapfel experiment [8]; open circles, this work.
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Figure 4. Equation of state of hcp Hg: crosses and plusses, Takemura et al experiments [1]; open
triangles, Schulte and Holzapfel experiment [8]; open circles, this work.

better than at the 1% level for at least two reasons: (1) the GGA can overestimate equilibrium
lattice parameters in the 1% range; (2) lattice vibrations, even at temperatures near 0 K, can
produce changes in lattice parameters in the 1% range, e.g., the phonon spectra calculations of
Quong and Liu [16] show that the zero-point vibrations increase the lattice parameters from the
rigid-lattice values by 1.3% in bcc Li, by 0.4% in bcc Na and by 0.1% in fcc Al.

Determination of phase-transition pressures from rigid-lattice calculations is less accurate
than determination of the lattice vectors. The transition pressures correspond to the intersection
of G(p) functions for the two phases involved. The G(p) values are much more sensitive to
the effects of lattice vibrations than the lattice vectors. Thus from Debye theory the energy of
zero-point vibrations (ZPE) is proportional to the Debye theta �D and �D ∝ V −γG ∝ a−3γG,
where γG is the Grüneisen parameter with values typically between 1.5 and 2. Hence �D, ZPE
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and the change δG of G due to ZPE vary as a−5 or a−6. This sensitivity of G to changes in a,
which is different in different phases whose ZPE are different, can move the intersection point
of G(p) curves substantially, particularly if the G(p) curves are nearly parallel, as is common.
The transition pressures in [10] served to separate the phases of Hg, but are not accurate because
the effects of lattice vibrations were not considered and also because the intersections of energy
curves rather than free-energy curves were used to find the transition pressures.

A measure of the improvement in the accuracy of band calculations since the calculations
in [10] were made is provided by comparison of the values of structural parameters of hcp
Hg from [10] and here. The values of a(p) and c(p) separately are not given in [10], but
figure 3(c) gives (c/a)(p). The value of c/a at p = 0 is 25% higher than found here and
in the experiment, and the value at p = 0.5 Mbar is 10% higher than here. Although [10] is
a first-principles calculation, it used a model potential made up of structure-independent but
volume-dependent pair interactions plus a volume-dependent term now replaced by the Kohn–
Sham plus GGA potential.
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